Attosecond Science with X-ray FELs

James P. Cryan Stanford PULSE Institute Linac Coherent Light Source SLAC National Accelerator Laboratory

Frontiers of Physical Sciences with XFELS Workshop November 13, 2019

Coherent Electronic Phenomena

- Electron motion is responsible for all photochemistry
- Our goal is to track the evolution of electrons on their natural time scales
- Determine how attosecond scale electronic dynamics (and ٠ coherence) effects longer timescale, femtosecond motion.

Coherent Electronic Phenomena

- Ultrafast X-rays are the ideal tool to create and probe coherent electronic phenomena
 - Sub-femtosecond duration
 - Atomic site-specificity.

Outline

- Tools to probe electron dynamics in molecular systems •
 - **Developing an attosecond XFEL** •
- Recap of some of our work on attosecond timescale dynamics • @ LCLS
- **Opportunities for f** ۲

Basic Energy Sciences Roundtable

Opportunities for Basic Research at the Frontiers of XFEL Ultrafast Science

Eiture 1. Introd		iv 1
2. Priorit	y Research Opportunities	6
2.1	PRO 1: Probing and controlling electron motion within a molecule	6
	Scientific Opportunities and Challenges	6
	Current Status, Strategic Research and Implementation	10
	Scientific Impact	12
2.2	PRO 2: Discovering novel quantum phases through coherent	
	light-matter coupling	14
	Scientific Opportunities and Challenges	14
	Current Status, Strategic Research and Implementation	19
	Scientific Impact	21
2.3	PRO 3: Capturing rare events and intermediate states in the	
	transformation of matter	22
	Scientific Opportunities and Challenges.	23
	Current Status, Strategic Research and Implementation	27
	Scientific Impact	29
3. Fronti 3. Cross-	ers of Physical Sciences with cuting research opportunities for ultrafast x-ray science XPLS Workshop	30

4

Tools for Probing Charge Dynamics

Development of Attosecond XFEL pulses

Stanford PULSE Institute

Angular Streaking at FELs

A co-axial velocity map imaging spectrometer for electrons

S. Li,^{1,2,a} E. G. Champenois,³ R. Coffee,^{3,4} Z. Guo,⁵ K. Hegazy,^{1,3} A. Kamalov,^{1,3} A. Natan,³ J. O'Neal,^{1,3} T. Osipov,⁴ M. Owens III,² D. Ray,⁴ D. Rich,² P. Walter,⁴ A. Marinelli,² and J. P. Cryan^{3,4,b}

Frontiers of Physical Sciences with **XFELS Workshop**

0

Opportunities for Attosecond Measurements of Electron Dynamics

- The attosecond scale is the timescale for electronic motion on the atomic length scale.
- Coherent charge motion (Charge Migration)
 - Superposition of electronic states will evolve on the subfemtosecond timescale
 - Could offer the possibility to control the charge localization in molecules.
- Time-resolving electron correlation.
 - The exchange–correlation term in the many-body Hamiltonian can have large effects on electronic configuration of a molecule, and thus the chemical bonding.
 - Non-sequential ionization
 - Auto-ionization, Auger Decay

Ultrafast Charge Migration

- Superpositions of electronic states will evolve on the subfemtosecond timescale.
- Nuclear motion will alter the coherence
- We want to determine what role attosecond scale electronic coherence has on longer timescale, femtosecond motion (Chemistry).
- Attosecond-pump/attosecondprobe

Ultrafast Charge Migration

- Superpositions of electronic states will evolve on the subfemtosecond timescale.
- Nuclear motion will alter the coherence
- We want to determine what role attosecond scale electronic coherence has on longer timescale, femtosecond motion (Chemistry).
- Attosecond-pump/attosecondprobe
- Focus of science campaign @ LCLS

X-Ray Absorption Spectroscopy

ARTICLE

Probing ultrafast $\pi\pi^*/n\pi^*$ internal conversion in organic chromophores via K-edge resonant absorption

OPEN

T.J.A. Wolf ¹, R.H. Myhre^{1,2}, J.P. Cryan¹, S. Coriani^{3,4}, R.J. Squibb⁵, A. Battistoni¹, N. Berrah⁶, C. Bostedt^{7,8,9}, P. Bucksbaum^{1,10}, G. Coslovich⁷, R. Feifel⁵, K.J. Gaffney^{1,11}, J. Grilj¹², T.J. Martinez ^{1,13}, S. Miyabe^{1,13,14}, S.P. Moeller⁷, M. Mucke¹⁵, A. Natan ¹, R. Obaid⁶, T. Osipov⁷, O. Plekan¹⁶, S. Wang¹, H. Koch^{1,2} & M. Gühr^{1,17}

- X-ray absorption probes overlap of valence orbitals with core electrons
- Very useful for ultrafast photochemistry

Molecular Effects on Electronic Coherence

NH₂

OH

С

hole density Q(z,t)

- Can coherent electronic excitations provide a route to by-pass IVR in controlling molecular reactions?
 - Chem. Phys. Lett. 285, 25-33 (1998)
 - Nat. Photonics 8 195-204 (2014)
- Measure coherence lifetime
- Effect of structure on charge migration.
 - Amino-phenol derivatives.

А

Е

H₂N^{*}

HO

В

 NH_2

ОН

NH₂

intensity (10¹⁶ W cm⁻²)

Frontiers of Physical Sciences with XFELS Workshop

Electron Correlations in Photoionization

Attosecond correlation dynamics

M. Ossiander^{1,2*}, F. Siegrist^{1,2}, V. Shirvanyan^{1,2}, R. Pazourek³, A. Sommer¹, T. Latka^{1,2}, A. Guggenmos^{1,4}, S. Nagele³, J. Feist⁵, J. Burgdörfer³, R. Kienberger^{1,2} and M. Schultze^{1,4*}

Inter-Channel Coupling in Molecular Systems in the Time Domain

A. Kamalov and J. P. Cryan in prep

Shape Resonance in X-ray Absorption in Time-Domain

0

5

Accumulation time tacc (fs)

10

15

20(

-5

CHEMICAL PHYSICS

Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron

Stanfor PULSE Institu

V. Gruson,^{1*} L. Barreau,^{1*} Á. Jiménez-Galan,² F. Risoud,³ J. Caillat,³ A. Maquet,³ B. Carré,¹ F. Lepetit,¹ J.-F. Hergott,¹ T. Ruchon,¹ L. Argenti,²[†] R. Taïeb,³ F. Martín,^{2,4,5}[‡] P. Salières¹[‡]

-10

Non-sequential Ionization

Early LCLS experiments observed sequential ionization

PRL 105, 083004 (2010)

PHYSICAL REVIEW LETTERS

Auger Electron Angular Distribution of Double Core-Hole States in the Molecular Reference Frame

James P. Cryan,^{1,2,*} J. M. Glownia,^{1,3} J. Andreasson,⁴ A. Belkacem,⁵ N. Berrah,⁶ C. I. Blaga,⁷ C. Bostedt,⁸ J. Bozek,⁸ C. Buth,^{1,9} L. F. DiMauro,⁷ L. Fang,⁶ O. Gessner,⁵ M. Guehr,¹ J. Hajdu,⁴ M. P. Hertlein,¹⁰ M. Hoener,^{6,10} O. Kornilov,⁵ J. P. Marangos,¹¹ A. M. March,¹² B. K. McFarland,^{1,3} H. Merdji,^{1,13} V. S. Petrović,² C. Raman,¹⁴ D. Ray,^{12,15} D. Reis,^{1,3} F. Tarantelli,¹⁶ M. Trigo,¹ J. L. White,³ W. White,⁸ L. Young,¹² P. H. Bucksbaum,^{1,2,3} and R. N. Coffee^{1,8}

PHYSICAL REVIEW A 94, 043418 (2016)

Nonsequential two-photon absorption from the K shell in solid zirconium

Shambhu Ghimire,^{1,*} Matthias Fuchs,² Jerry Hastings,³ Sven C. Herrmann,⁴ Yuichi Inubushi,⁵ Jack Pines,⁴ Sharon Shwartz,⁶ Makina Yabashi,⁵ and David A. Reis^{1,7,†}

Nonsequential Double lonization

$$\begin{split} N_{SI}^{(S)} &= \int dt \, N_{GS}(t) \, \sigma_1^{(1)} \, I(t) \propto \tau \\ N_{DI}^{(S)} &= \int dt \, N_{SI}(t) \, \sigma_2^{(1)} \, I(t) \\ &\propto \sigma_2^{(1)} N_{SI} \, \tau \propto \sigma_1^{(1)} \sigma_2^{(1)} \tau^2 \\ N_{DI}^{(NS)} &= \int dt \, N_{GS}(t) \, \sigma^{(2)} \, I^2(t) \propto \sigma^{(2)} \tau \\ &\sigma_1^{(1)} \sigma_2^{(1)} >> \sigma^{(2)} \\ &\frac{N_{DI}^{(S)}}{N_{DI}^{(NS)}} &= \frac{\sigma_1^{(1)} \sigma_2^{(1)}}{\sigma^{(2)}} \tau \quad \text{Short pulse suppress sequential process} \end{split}$$

Push far below core-hole lifetime

Time-resolve electron emission

week ending

20 AUGUST 2010

Molecules in Strong-Laser Fields

ATTOSECOND DYNAMICS

Measurement and laser control of attosecond charge migration in ionized iodoacetylene

P. M. Kraus,¹ B. Mignolet,^{2,3} D. Baykusheva,¹ A. Rupenyan,¹ L. Horný,¹ E. F. Penka,⁴ G. Grassi,¹ O. I. Tolstikhin,⁵ J. Schneider,¹ F. Jensen,⁶ L. B. Madsen,⁷ A. D. Bandrauk,⁴ F. Remacle,² H. J. Wörner^{1*}

- Another route to studying ultrafast charge motion
- Frontiers of Physical Sciences with XFELS Workshop

Vol. 3. No. 3 / March 2016 / Optica 2

Review Article

molecules

optica

Laser-driven nonadiabatic electron dynamics in

Non-linear probing (Raman)

Summary

- Sub-femtosecond X-ray pulses provide a unique opportunity to study the motion of electrons on the atomic length scale.
- This is critical for understanding the role of electronic coherence in photochemical reactions
- Such technology would also allow for time-resolving electronelectron interactions (or correlations)
- Requirements:
 - 10-200 μJ pulse energies
 - Sub-femtosecond pulse duration
 - Within factor 3 of transform limit would be most useful.
 - Soft X-ray (< 1keV)
 - Two-color pulses,
 - 100's eV separations between colors.
 - Tunable delay (nice to scan through zero)
 - 1 μm² focus
 - Synchronized NIR laser field
- Measurement can be better (cheaper, easier) than control.

